Add like
Add dislike
Add to saved papers

Hemodialysis monitoring using mid- and near-infrared spectroscopy with partial least squares regression.

Blood constituents such as urea, glucose, lactate, phosphate and creatinine are of high relevance in monitoring the process of detoxification in ambulant dialysis treatment. In the present work, 2 different vibrational spectroscopic techniques are used to determine those molecules quantitatively in artificial dialysate solutions. The goal of the study is to compare the performance of near-infrared (NIR) and mid-infrared (MIR) spectroscopy in hyphenation with partial least squares regression (PLSR) directly by using the same sample set. The results show that MIR spectroscopy is better suited to analyze the analytes of interest. Multilevel multifactor design is used to cover the relevant concentration variations during dialysis. MIR spectroscopy coupled to a multi reflection attenuated total reflection (ATR) cell enables reliable prediction of all target analytes. In contrast, the NIR spectroscopic method does not give access to all 5 components but only to urea and glucose. For both methods, coefficients of determination greater or equal to 0.86 can be achieved in the test-set validation process for urea and glucose. Lactate, phosphate and creatinine perform well in the MIR with R2  ≥ 0.95 using test-set validation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app