Add like
Add dislike
Add to saved papers

Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system.

In this study, a full-scale internal circulation (IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste (MSW) incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates (OLR) of 21.06-25.16kg chemical oxygen demand (COD)/(m3 ∙day). The COD removal efficiency and biogas yield respectively reached 89.4%-93.4% and 0.42-0.50m3 /kgCOD. The formation of extracellular polymeric substances (EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7mg/g Volatile Suspended Solid (VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from -26.2mV and 30.35% to -10.6mV and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy (3D-EEM) and Fourier transform infrared spectroscopy (FT-IR) analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app