Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Development and evaluation of rapid screening detection methods for genetically modified crops using loop-mediated isothermal amplification.

Food Chemistry 2018 June 31
We developed new loop-mediated isothermal amplification (LAMP)-based detection methods for the screening of genetically modified (GM) maize and soybean events. The LAMP methods developed targeted seven sequences: cauliflower mosaic virus 35S promoter; 5-enolpyruvylshikimate-3-phosphate synthase gene from Agrobacterium tumefaciens strain CP4 (cp4epsps); phosphinothricin acetyltransferase (pat) gene; mannose-6-phosphate isomerase gene; Pisum sativum ribulose 1, 5-bisphosphate carboxylase terminator; a common sequence between Cry1Ab and Cry1Ac genes; and a GA21 construct-specific sequence. We designed new specific primer sets for each target, and the limit of detection (LOD) was evaluated using authorized GM maize and soybean events. LODs for each target were ≤ 0.5%. To make the DNA extraction process simple and rapid, we also developed a direct LAMP detection scheme using crude cell lysates. The entire process, including pretreatments and detection, could be completed within 1 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app