Add like
Add dislike
Add to saved papers

Co-regulation of photosynthetic processes under potassium deficiency across CO 2 levels in soybean: mechanisms of limitations and adaptations.

Plants photosynthesis-related traits are co-regulated to capture light and CO2 to optimize the rate of CO2 assimilation (A). The rising CO2 often benefits, but potassium (K) deficiency adversely affects A that contributes to the majority of plant biomass. To evaluate mechanisms of photosynthetic limitations and adaptations, soybean was grown under controlled conditions with an adequate (control, 5.0 mM) and two K-deficient (moderate, 0.50 and severe, 0.02 mM) levels under ambient (aCO2 ; 400 µmol mol-1 ) and elevated CO2 (eCO2 ; 800 µmol mol-1 ). Results showed that under severe K deficiency, pigments, leaf absorption, processes of light and dark reactions, and CO2 diffusion through stomata and mesophyll were down co-regulated with A while light compensation point increased and photorespiration, alternative electron fluxes, and respiration were up-regulated. However, under moderate K deficiency, these traits were well co-regulated with the sustained A without any obvious limitations amid ≈ 50% reduction in leaf K level. Primary mechanism of K limitation to A was either biochemical processes (Lb ≈ 60%) under control and moderate K deficiency or the CO2 diffusion limitations (DL ≈ 70%) with greater impacts of mesophyll than stomatal pathways under severe K deficiency. The eCO2 increased DL while lessened the Lb under K deficiency. Adaptation strategies to severe K deficiency included an enhanced K utilization efficiency (KUE), and reduction of photosystem II excitation pressure by decreasing photosynthetic pigments, light absorption, and photochemical quenching while increasing photorespiration and alternative electron fluxes. The eCO2 also stimulated A and KUE when K deficiency was not severe. Thus, plants responded to K deficiency by a coordinated regulation of photosynthetic processes to optimize A, and eCO2 failed to alleviate the DL in severely K-deficient plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app