Add like
Add dislike
Add to saved papers

Colorectal cancer spheroid biobanks: multi-level approaches to drug sensitivity studies.

Biobanking of molecularly characterized colorectal cancer stem cells (CSCs) generated from individual patients and growing as spheroids in defined serum-free media offer a fast, feasible, and multi-level approach for the screening of targeted therapies and drug resistance molecular studies. By combining in vitro and in vivo analyses of cetuximab efficacy with genetic data on an ongoing collection of stem cell-enriched spheroids, we describe the identification and preliminary characterization of microsatellite stable (MSS) CSCs that, despite the presence of the KRAS (G12D) mutation, display epidermal growth factor (EGF)-dependent growth and are strongly inhibited by anti-EGF-receptor (EGFR) treatment. In parallel, we detected an increased resistance to anti-EGFR therapy of microsatellite instable (MSI) CSC lines irrespective of KRAS mutational status. MSI CSC lines carried mutations in genes coding for proteins with a role in RAS and calcium signaling, highlighting the role of a genomically unstable context in determining anti-EGFR resistance. Altogether, these results argue for a multifactorial origin of anti-EGFR resistance that emerges as the effect of multiple events targeting direct and indirect regulators of the EGFR pathway. An improved understanding of key molecular determinants of sensitivity/resistance to EGFR inhibition will be instrumental to optimize the clinical efficacy of anti-EGFR agents, representing a further step towards personalized treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app