Add like
Add dislike
Add to saved papers

Certain BCG-reactive responses are associated with bladder cancer prognosis.

A subset of bladder patients does not respond to BCG treatment effectively and the underlying reason behind this observation is currently unclear. CD4+ T cells are composed of various subsets that each expresses a distinctive set of cytokines and can potently shift the immune response toward various directions. In this study, we examined the CD4+ T-cell cytokine response in bladder cancer patients toward BCG stimulation. We found that bladder cancer patients presented a variety of responses toward BCG, with no uniform characteristics. Those patients with high IFN-γ and IL-21 expression in CD4+ T cells presented significantly better prognosis than patients with low cytokine secretion in CD4+ T cells. Tumor-infiltrating CD4+ T cells were significantly less potent in expressing IFN-γ, IL-4, and IL-17, and more potent in expressing IL-10 than circulating CD4+ T cells. In addition, we found no difference in CD80, CD86, or MHC II expression by macrophages from patients with different IFN-γ and IL-21 levels. However, the secretion of IL-12, a Th1-skewing cytokine, was released at significantly higher level by macrophages from patients with high IFN-γ or high IL-21 secretion. We also identified that modulating monocytes/macrophages by GM-CSF-mediated polarization resulted in significantly elevated expression of IFN-γ and IL-21 from CD4+ T cells. Overall, these results suggested that the specific types of responses mounted by CD4+ T cells were critical to the final outcome of bladder cancer patients and can be influenced by monocyte/macrophage polarization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app