Add like
Add dislike
Add to saved papers

Porous epoxy phenolic novolac resin polymer microcapsules: Tunable release and bioactivity controlled by epoxy value.

Microcapsules (MCs) prepared with diverse wall material structures may exhibit different properties. In this study, MCs were fabricated with three kinds of epoxy phenolic novolac resins (EPNs), which possessed unique epoxy values as wall-forming materials by interfacial polymerization. The effects of the EPN types on the surface morphology, particle size distribution, encapsulation efficiency, thermal stability as well as release behavior and bioactivity of the MCs were investigated. In all three samples, the MCs had nearly spherical shapes with fine monodispersities and sizes in the range of 7-30 μm. Scanning electron microscopy (SEM) images showed that some small pores (ranging from 50 nm to 400 nm) appeared on the microcapsule surfaces and that the porosity decreased with an increasing of epoxy value. The X-ray diffractometer (XRD) analysis indicated that the cured EPN shells had larger degrees of crosslinking with higher epoxy values, leading to better thermal stabilities. Moreover, the release rate of the core material (pendimethalin) decreased with an increasing of epoxy value and thus resulted in a lower herbicidal control efficacy. The results of our research will enhance the potential application of EPNs as smart wall-forming materials to prepare porous MCs for controlled release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app