Add like
Add dislike
Add to saved papers

MicroRNA-216b actively modulates diabetic angiopathy through inverse regulation on FZD5.

Gene 2018 June 6
BACKGROUND: In this work, we examined the angiogenic function of microRNA-216b in an in vitro rat diabetic model of myocardial microvascular endothelial cells (MMECs).

METHODS: MMECs were extracted from Wistar rats (MMEC(WI)) or diabetic Goto-Kakizaki (GK) rats (MMEC(GK)) and cultured in vitro. QRT-PCR was applied to compare miR-216b between MMEC(WI) and MMEC(GK). MiR-216b was downregulated in MMEC(GK). Its effects on angiogenic development, including invasion and proliferation, were evaluated. In MMEC(GK), putative miR-216b downstream target gene, frizzled class receptor 5 (FZD5), was evaluated by dual-luciferase reporter, qRT-PCR and western blot assays, respectively. FZD5 was further downregulated in MMEC(GK) with stable miR-216b downregulation to evaluate its functional role in regulating diabetic angiogenesis.

RESULTS: MiR-216b was markedly overexpressed in MMEC(GK). MiR-216b downregulation significantly enhanced angiogenesis in MMEC(GK) by promoting invasion and proliferation. FZD5 was inversely upregulated in miR-216b-downregulated MMEC(GK). Subsequently, FZD5 downregulation suppressed angiogenic development, by inhibiting invasion and proliferation in miR-216b-downregulated MMEC(GK).

CONCLUSION: MicroRNA-216b was overexposed in diabetic MMECs and its downregulation may actively enhance angiogenesis in diabetic angiopathy through inverse regulation on FZD5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app