JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transforming growth factor-β modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion.

BACKGROUND: Tumor microenvironment consists of the extracellular matrix (ECM), stromal cells, such as fibroblasts (FBs) and cancer associated fibroblasts (CAFs), and a myriad of soluble factors. In many tumor types, including pancreatic tumors, the interplay between stromal cells and the other tumor microenvironment components leads to desmoplasia, a cancer-specific type of fibrosis that hinders treatment. Transforming growth factor beta (TGF-β) and CAFs are thought to play a crucial role in this tumor desmoplastic reaction, although the involved mechanisms are unknown.

METHODS: Optical/fluorescence microscopy, atomic force microscopy, image processing techniques, invasion assay in 3D collagen I gels and real-time PCR were employed to investigate the effect of TGF-β on normal pancreatic FBs and CAFs with regard to crucial cellular morphodynamic characteristics and relevant gene expression involved in tumor progression and metastasis.

RESULTS: CAFs present specific myofibroblast-like characteristics, such as α-smooth muscle actin expression and cell elongation, they also form more lamellipodia and are softer than FBs. TGF-β treatment increases cell stiffness (Young's modulus) of both FBs and CAFs and increases CAF's (but not FB's) elongation, cell spreading, lamellipodia formation and spheroid invasion. Gene expression analysis shows that these morphodynamic characteristics are mediated by Rac, RhoA and ROCK expression in CAFs treated with TGF-β.

CONCLUSIONS: TGF-β modulates CAFs', but not FBs', cell shape, stiffness and invasion.

GENERAL SIGNIFICANCE: Our findings elucidate on the effects of TGF-β on CAFs' behavior and stiffness providing new insights into the mechanisms involved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app