Add like
Add dislike
Add to saved papers

Blood brain barrier (BBB)-disruption in intracortical silicon microelectrode implants.

Biomaterials 2018 May
Chronically implanted microelectrodes in the neural tissue elicit inflammatory responses that are time varying and have been shown to depend on multiple factors. Among these factors, blood brain barrier (BBB)-disruption has been hypothesized as one of the dominant factors resulting in electrode failure. A series of events that includes BBB and cell-membrane disruption occurs during electrode implantation that triggers multiple biochemical cascades responsible for microglial and astroglial activation, hemorrhage, edema, and release of pro-inflammatory neurotoxic cytokines that causes neuronal degeneration and dysfunction. Typically, microwire arrays and silicon probes are inserted slowly into the neural tissue whereas the silicon Utah MEAs (UMEA) are inserted at a high speed using a pneumatic inserter. In this work, we report the sequelae of electrode-implant induced cortical injury at various acute time points in UMEAs implanted in the brain tissue by quantifying the expression profile for key genes mediating the inflammatory response and tight junction (TJ) and adherens junction (AJ) proteins that form the BBB and are critical to the functioning of the BBB. Our results indicated upregulation of most pro-inflammatory genes relative to naïve controls for all time points. Expression levels for the genes that form the TJ and AJ were downregulated suggestive of BBB-dysfunction. Moreover, there was no significant difference between stab and implant groups suggesting the effects of UMEA insertion-related trauma in the brain tissue. Our results provide an insight into the physiological events related to neuroinflammation and BBB-disruption occurring at acute time-points following insertion of UMEAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app