Add like
Add dislike
Add to saved papers

Our First Choice: Cellular and Genetic Underpinnings of Trophectoderm Identity and Differentiation in the Mammalian Embryo.

The trophectoderm (TE) is the first cell population to appear in the mammalian preimplantation embryo, as the result of the differentiation of totipotent blastomeres located on the outer surface of the late morula. Trophectodermal cells arrange in a monolayer covering the expanding blastocyst and acquire an epithelial phenotype with distinct apicobasal polarity and a basal lamina placed toward the blastocyst interior. During later development through the periimplantation and gastrulation stages, the TE gives rise to extraembryonic membranes and cell types that will eventually form most of the fetal placenta, the specialized organ through which the embryo obtains maternal nourishment necessary for subsequent exponential growth. The specification of the TE is controlled by the combination of morphological cues arising from cell polarity with differential activity of signaling pathways such as Hippo and Notch, and the restriction to outer cells of lineage specifiers such as CDX2. This is possibly the first symmetry-breaking decision undertaken by the uncommitted cells produced by a handful of mitosis divisions from the newly fertilized zygote. Understanding how this cell lineage is specified will therefore provide unique information about development, differentiation, and how the interplay between cellular morphology and signaling and regulatory factors results in a correctly 3D-patterned embryo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app