Add like
Add dislike
Add to saved papers

Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion-induced oxidative stress in diabetic rats.

Discovering an effective approach to limit infarction size after ischemia-reperfusion has a clinical importance in diabetics. We investigated the anti-myocardial ischemia-reperfusion injury effect of resistance training and Crataegus oxyacantha extract on diabetic rats. To this end, 50 male Wistar rats were randomly divided into 5 groups: the sedentary control (SC), sedentary diabetic (SD), resistance trained diabetic (RD), diabetic plus C. oxyacantha extract treatment (CD) and resistance trained diabetic plus C. oxyacantha extract treatment (RCD) groups. Animals in trained groups were subjected to progressive resistance training program with the use of a ladder (5 days/week, for 10 weeks). C. oxyacantha extract rats were treated with 100 mg/kg body weight of the extract using a gavage every day for 10 weeks. After treatments, rats were subjected to ischemia via LAD artery ligation for 30 min followed by 90 min reperfusion. The heart was collected following the ischemia-reperfusion and analyzed for oxidative stress and ischemia-reperfusion injury. Compared to the SC group, LDH, CK-MB and infarction size in the SD group were significantly higher, whereas injury indices in the RCD group were significantly lower than those in the SD group. GPx and MPO levels after reperfusion increased and decreased, respectively in response to training and C. oxyacantha. These findings suggest that 10 weeks resistance training and C. oxyacantha can synergistically decrease ischemia-reperfusion injury, and this mechanism may be related to a reduction in oxidative stress which is normally associated with ischemia-reperfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app