Add like
Add dislike
Add to saved papers

Enhanced particle self-ordering in a double-layer channel.

Biomedical Microdevices 2018 Februrary 24
In this work, a novel double-layer microfluidic device for enhancing particle focusing was presented. The double-layer device consists of a channel with expansion-contraction array and periodical slanted grooves. The secondary flows induced by the grooves modulate the flow patterns in the expansion-contraction-array (ECA) channel, further affecting the particle migration. Compared with the single ECA channel, the double-layer channel can focus the particles over a wider range of flow rate. Due to the differentiation of lateral migration, the double-layer channel is able to distinguish the particles with different sizes. Furthermore, the equilibrium positions could be modulated by the orientation of grooves. This work demonstrates the possibility to enhance and adjust the inertial focusing in an ECA channel with the assistance of grooves, which may provide a simple and portable platform for downstream filtration, separation, and detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app