Add like
Add dislike
Add to saved papers

Dynamics of virus and immune response in multi-epitope network.

The host immune response can often efficiently suppress a virus infection, which may lead to selection for immune-resistant viral variants within the host. For example, during HIV infection, an array of CTL immune response populations recognize specific epitopes (viral proteins) presented on the surface of infected cells to effectively mediate their killing. However HIV can rapidly evolve resistance to CTL attack at different epitopes, inducing a dynamic network of interacting viral and immune response variants. We consider models for the network of virus and immune response populations, consisting of Lotka-Volterra-like systems of ordinary differential equations. Stability of feasible equilibria and corresponding uniform persistence of distinct variants are characterized via a Lyapunov function. We specialize the model to a "binary sequence" setting, where for n epitopes there can be [Formula: see text] distinct viral variants mapped on a hypercube graph. The dynamics in several cases are analyzed and sharp polychotomies are derived characterizing persistent variants. In particular, we prove that if the viral fitness costs for gaining resistance to each epitope are equal, then the system of [Formula: see text] virus strains converges to a "perfectly nested network" with less than or equal to [Formula: see text] persistent virus strains. Overall, our results suggest that immunodominance, i.e. relative strength of immune response to an epitope, is the most important factor determining the persistent network structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app