Add like
Add dislike
Add to saved papers

Analysis of microcantilevers excited by pulsed-laser-induced photoacoustic waves.

Optics Express 2018 Februrary 20
This study presents a simulation-based analysis on the excitation of microcantilever in air using pulsed-laser-induced photoacoustic waves. A model was designed and coded to investigate the effects of consecutive photoacoustic waves, arising from a spherical light absorber illuminated by short laser pulses. The consecutiveness of the waves were adjusted with respect to the pulse repetition frequency of the laser to examine their cumulative effects on the oscillation of microcantilever. Using this approach, oscillation characteristics of two rectangular cantilevers with different resonant frequencies (16.9 kHz and 505.7 kHz) were investigated in the presence of the random oscillations. The results show that the effective responses of the microcantilevers to the consecutive photoacoustic waves provide steady-state oscillations, when the pulse repetition frequency matches to the fundamental resonant frequency or its lower harmonics. Another major finding is that being driven by the same photoacoustic pressure value, the high frequency cantilever tend to oscillate at higher amplitudes. Some of the issues emerging from these findings may find application area in atomic force microscopy actuation and photoacoustic signal detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app