Add like
Add dislike
Add to saved papers

Secure communications using nonlinear silicon photonic keys.

Optics Express 2018 Februrary 20
We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10-5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app