JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inactivation of filter bound aerosolized MS2 bacteriophages using a non-conductive ultrasound transducer.

The inactivation of viruses that retain their infectivity when transmitted through the air is challenging. To address this issue, this study used a non-contact ultrasound transducer (NCUT) to generate shock waves in the air at specific distances, input voltages, and exposure durations, targeting bacteriophage virus aerosols captured on to H14 HEPA filters. Initially, a frequency of 27.56 kHz (50V) at 25-mm distance was used, which yielded an inactivation efficiency of up to 32.69 ± 12.10%. Other frequencies at shorter distances were investigated, where 29.10 kHz had the highest inactivation efficiency (up to 81.95 ± 9.79% at 8.5-mm distance and 100 V). Longer exposure times also influenced virus inactivation, but the results were inconclusive because the NCUT overheated with time. Overall, NCUT appears to be a promising method for inactivating virus aerosols that may be safer than other forms of inactivation, which can cause genetic mutations or produce dangerous by-products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app