Add like
Add dislike
Add to saved papers

Mst1/2 Kinases Modulate Glucose Uptake for Osteoblast Differentiation and Bone Formation.

Bone formation and bone homeostasis are energy-expensive processes. How they are being regulated by energy needs is not completely understood. This is of high clinical importance because diabetic-induced bone loss is common whereas the underlying mechanisms are unclear. Here, we show that Mst1/2 are important regulators for glucose uptake during osteoblast differentiation. Genetically removal of both Mst1/2 kinases simultaneously in mice in early and mature osteoblasts inhibits bone formation and bone remodeling, respectively. We found that the activity of Mst1/2 kinases is sensitive to glucose levels, and in turn, regulates glucose uptake by stabilizing key glucose transporter Glut1. In the absence of Mst1/2 kinases, Glut1 expression is loss and results in AMP-dependent protein kinase (AMPK) activation and subsequent proteasomal degradation of Runx2. The streptozotocin (STZ)-induced diabetic mouse model also recapitulates similar changes in the bone tissues. In addition, Glut1 expression regulated by Mst1/2 kinases is independent of Yap/Taz expression. Our results unravel new mechanistic insights into the orchestration of glucose level and bone homeostasis. © 2018 American Society for Bone and Mineral Research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app