Add like
Add dislike
Add to saved papers

Comparative transcriptome analysis reveals an early gene expression profile that contributes to cold resistance in Hevea brasiliensis (the Para rubber tree).

Tree Physiology 2018 September 2
The rubber tree (Hevea brasiliensis Muell. Arg) is a tropical, perennial, woody plant that is susceptible to cold stress. In China, cold stress has been found to severely damage rubber plants in plantations in past decades. Although several Hevea clones that are resistant to cold have been developed, their cold hardiness mechanism has yet to be elucidated. For the study reported herein, we subjected the cold-resistant clone CATAS93-114 and the cold-sensitive clone Reken501 to chilling stress, and characterized their transcriptomes at 0, 2, 8 and 24 h after the start of chilling. We found that 7870 genes were differentially expressed in the transcriptomes of the two clones. In CATAS93-114, a greater number of genes were found to be up- or downregulated between 2 h and 8 h than in Reken501, which indicated a more rapid and intensive response by CATAS93-114 than by Reken501. The differentially expressed genes were grouped into seven major clusters, according to their Gene Ontology terms. The expression profiles for genes involved in abscisic acid metabolism and signaling, in an abscisic acid-independent pathway, and in early signal perception were found to have distinct expression patterns for the transcriptomes of the two clones. The differential expression of 22 genes that appeared to have central roles in response to chilling was confirmed by quantitative real-time PCR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app