JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Zinc pyrithione activates K+ channels and hyperpolarizes the membrane of rat pulmonary artery smooth muscle cells.

The membrane potential helps determine pulmonary artery smooth muscle cell (PASMC) contraction. The Kv7 channel activators, retigabine and flupirtine, are thought to dilate pulmonary arteries by hyperpolarising PASMC. Zinc pyrithione activates Kv7 channels by a mechanism distinct from retigabine and with different Kv7 subunit selectivity. This study aimed to determine if zinc pyrithione selectively activates Kv7 channels in rat PASMC to evoke pulmonary artery dilation. Zinc pyrithione relaxed pulmonary arteries with half-maximal effect at 4.3μM. At 10μM it activated pronounced voltage-dependent K+ current and hyperpolarized PASMCs by around 10mV. Tetraethylammonium ions (TEA, 10mM) and paxilline (1μM) abolished both the current and hyperpolarisation. XE991 (10μM) blocked the hyperpolarization and reduced the current by 30%. Iberiotoxin (50nM) had no effect on the hyperpolarisation, but reduced the current by 40%. The XE991-sensitive current activated with an exponential time course (time constant 17ms), whereas the iberiotoxin-sensitive current followed a bi-exponential time course (time constants 6 and 57ms), suggesting that the drugs blocked different components of the zinc pyrithione-induced current. Zinc pyrithione therefore appears to activate at least two types of K+ channel in PASMC; an XE991, TEA and paxilline-sensitive Kv7 channel and a TEA, paxilline and iberiotoxin-sensitive BKCa channel. Both could contribute to the relaxing effect of zinc pyrithione on pulmonary artery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app