Add like
Add dislike
Add to saved papers

Prediction of memory formation based on absolute electroencephalographic phases in rhinal cortex and hippocampus outperforms prediction based on stimulus-related phase shifts.

Absolute (i.e. measured) rhinal and hippocampal phase values are predictive for memory formation. It has been an open question, whether the capability of mediotemporal structures to react to stimulus presentation with phase shifts may be similarly indicative of successful memory formation. We analysed data from 27 epilepsy patients implanted with depth electrodes in the hippocampus and entorhinal cortex, who performed a continuous word recognition task. Electroencephalographic phase information related to the first presentation of repeatedly presented words was used for prediction of subsequent remembering vs. forgetting applying a support vector machine. The capability to predict successful memory formation based on stimulus-related phase shifts was compared to that based on absolute phase values. Average hippocampal phase shifts were larger and rhinal phase shifts were more accumulated for later remembered compared to forgotten trials. Nevertheless, prediction based on absolute phase values clearly outperformed phase shifts and there was no significant increase in prediction accuracies when combining both measures. Our findings indicate that absolute rhinal and hippocampal phases and not stimulus-related phase shifts are most relevant for successful memory formation. Absolute phases possibly affect memory formation via influencing neural membrane potentials and thereby controlling the timing of neural firing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app