Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Polyphenolic Compounds Alter Stress-Induced Patterns of Global DNA Methylation in Brain and Blood.

SCOPE: Stress is a known contributor to various forms of disease in humans and animals, although mechanisms are still unknown. In animals, psychosocial stress-induced depression/anxiety phenotypes are coincidental with increased inflammation in both brain and blood. The authors recently showed that a novel treatment with a select bioactive polyphenol preparation promotes resilience to stress-mediated depression/anxiety phenotypes mice. Moreover, selective bioactive phenolic compounds within the polyphenol preparation are identified that are effective in mitigating the behavioral effects of bone marrow transplantation from stressed mice.

METHODS AND RESULTS: Here, an animal model of adult stress and bone marrow transplantation is used to identify an epigenetic signature of repeated social defeat stress (RSDS) that is passed through bone marrow hematopoietic progenitor cells to naïve mice, revealing the maintenance of epigenetic memory following stress both centrally and peripherally. Further, polyphenols are administered to naïve and stress-susceptible mice, demonstrating that polyphenol treatment in mice from both susceptible and naïve donors alters global DNA methylation in the central nervous system and periphery and likewise has an effect on human blood cells after immune challenge.

CONCLUSIONS: Findings highlight the enduring molecular memory of stress and the possible mechanism by which select bioactive polyphenols may promote resiliency to stress. Polyphenols may be an efficacious alternative to traditional pharmacological treatments in psychiatry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app