Add like
Add dislike
Add to saved papers

Cyanine Photocages Enable Spatial Control of Inducible Cre-Mediated Recombination.

Optical control over protein expression could provide a means to interrogate a range of biological processes. One approach has employed caged ligands of the estrogen receptor (ER) in combination with broadly used ligand-dependent Cre recombinase proteins. Existing approaches use UV or blue wavelengths, which hinders their application in tissue settings. Additionally, issues of payload diffusion can impede fine spatial control over the recombination process. Here, we detail the chemical optimization of a near-infrared (NIR) light-activated variant of the ER antagonist cyclofen. These studies resulted in modification of both the caging group and payload with lipophilic n-butyl esters. The appendage of esters to the cyanine cage improved cellular uptake and retention. The installation of a 4-piperidyl ester enabled high spatial resolution of the light-initiated Cre-mediated recombination event. These studies described chemical modifications with potential general utility for improving spatial control of intracellular caging strategies. Additionally, these efforts will enable future applications to use these molecules in complex physiological settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app