Add like
Add dislike
Add to saved papers

Dynamic behavior of a rotary nanomotor in argon environments.

Scientific Reports 2018 Februrary 23
When argon is used as a protecting gas in the fabrication or working environment of a nanodevice, absorption of some argon atoms onto the surface of the device lead to different responses. In this work, the rotation of the rotor in a carbon nanotube (CNT)-based rotary nanomotor in argon environment is investigated. In the rotary nanomotor, two outer CNTs act as the stator and are used to constrain the inner CNT (i.e., the rotor). The rotor is driven to rotate by the stator due to their collision during thermal vibration of their atoms. A stable rotational frequency (SRF) of the rotor occurs when the rotor reaches a dynamic equilibrium state. The value of the SRF decreases exponentially with an increase in the initial argon density. At dynamic equilibrium date, some of the argon atoms rotate synchronously with the rotor when they are absorbed onto either internal or external surface of the rotor. The interaction between the rest of the argon atoms and the rotor is stronger at higher densities of argon, resulting in lower values of the SRF. These principles provide insight for future experimentation and fabrication of such rotary nanomotor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app