Add like
Add dislike
Add to saved papers

Prediction of GTV median dose differences eases Monte Carlo re-prescription in lung SBRT.

Physica Medica : PM 2018 January
BACKGROUND AND PURPOSE: The use of Monte Carlo (MC) dose calculation algorithm for lung patients treated with stereotactic body radiotherapy (SBRT) can be challenging. Prescription in low density media and time-consuming optimization conducted CyberKnife centers to propose an equivalent path length (EPL)-to-MC re-prescription method based on GTV median dose. Unknown at the time of planning, GTV D50% practical application remains difficult. The current study aims at creating a re-prescription predictive model in order to limit conflicting dose value during EPL optimization.

MATERIAL AND METHODS: 129 patients planned with EPL algorithm were recalculated with MC. Relative GTV_D50% discrepancies were assessed and influencing parameters identified using wrapper feature selection. Based on best descriptive parameters, predictive nomogram was built from multivariate linear regression. EPL-to-MC OARs near max-dose discrepancies were reported.

RESULTS: The differences in GTV_D50% (median 10%, SD: 9%) between MC and EPL were significantly (p < .001) impacted by the lesion's surface-to-volume ratio and the average relative electronic density of the GTV and the GTV's 15 mm shell. Built upon those parameters, a nomogram (R2 = 0.79, SE = 4%) predicting the GTV_D50% discrepancies was created. Furthermore EPL-to-MC OAR dose tolerance limit showed a strong linear correlation with coefficient range [0.84-0.99].

CONCLUSION: Good prediction on the required re-prescription can be achieved prior planning using our nomogram. Based on strong linear correlation between EPL and MC for OARs near max-dose, further restriction on dose constraints during the EPL optimization can be warranted. This a priori knowledge eases the re-prescription process in limiting conflicting dose value.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app