Add like
Add dislike
Add to saved papers

Differential Transcriptome Analysis of Early Postnatal Developing Longissimus Dorsi Muscle from Two Pig Breeds Characterized in Divergent Myofiber Traits and Fatness.

Animal Biotechnology 2018 Februrary 23
Meat quality traits (MQTs) are very important in the porcine industry, which are mainly determined by skeletal muscle fiber composition, extra-muscular and/or intramuscular fat content. To identify the differentially expressed candidate genes affecting the meat quality traits, first we compared the MQTs and skeletal muscle fiber characteristics in the longissimus dorsi muscle (LDM) of the Northeast Min pig (NM) and the Changbaishan wild boar (CW) with their body weight approaching 90 kg. The significant divergences in the skeletal muscle fiber phenotypes and fatness traits between the two porcine breeds established an ideal model system for further identifying potential key functional genes that dominated MQTs. Further, a transcriptome profile analysis was performed using the Illumina sequencing method in early postnatal developing LDM from the two breeds at the ages of 42 days. Comparative analysis between these two cDNA libraries showed that there were 17,653 and 22,049 unambiguous tag-mapped sense transcripts detected from NM and CW, respectively. 4522 differentially expressed genes (DEGs) were revealed between the two tissue samples, of them, 4176 genes were found as having been upregulated and 346 genes were identified as having been downregulated in the NM library. By pathway enrichment analysis, a set of significantly enriched pathways were identified for the DEGs, which are potentially involved in myofiber development, differentiation and growth, lipogenesis and lipolysis in porcine skeletal muscle. The expression levels of 30 out of the DEGs were validated by real-time quantitative reverse transcriptase PCR (qRT-PCR) and the observed result was consistent noticeably with the Illumina transcriptome profiles. The findings from this study can contribute to future investigations of skeletal muscle growth and development mechanism and to establishing molecular approaches to improve meat quality traits in pig breeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app