Add like
Add dislike
Add to saved papers

Influence of chelation on the Fenton-based electrochemical degradation of herbicide tebuthiuron.

Chemosphere 2018 May
This study describes the performance of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes to degrade the herbicide tebuthiuron (TBH) in 0.050 M Na2 SO4 at pH = 3.0. Experiments were performed in an undivided cell equipped with a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode that produces H2 O2 . Physisorbed hydroxyl radicals (M(OH)) generated from water oxidation at the anode and/or free OH formed from Fenton's reaction acted as main oxidants. All processes became much more effective using a BDD anode because of the higher oxidation power of BDD(OH). Sulfate and nitrate were the predominant ions released during TBH destruction. In both, EF and PEF treatments, two distinct kinetic regimes were observed, the first one corresponding to the oxidation of free TBH by OH and the second one to that of the Fe(III)-TBH complex by M(OH). The effect of Fe2+ and TBH concentrations on the kinetics of both regions has been examined. Moreover, a poor mineralization was reached with Pt anode, whereas almost total mineralization was attained by EF and PEF with BDD. Both processes showed analogous mineralization rates because the intermediates produced could not be photodegraded by UVA light. Gas chromatography-mass spectrometry analysis of electrolyzed solutions revealed the generation of eight heteroaromatics along with 1,3-dimethylurea, which have been included in a reaction pathway proposed for the initial degradation of TBH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app