Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aerobic and strength training induce changes in oxidative stress parameters and elicit modifications of various cellular components in skeletal muscle of aged rats.

Skeletal muscle aging is associated with loss of mass, function, and strength-a condition known as sarcopenia. It has been reported that sarcopenia can be attenuated by physical exercise. Therefore, we investigated whether 2 different physical exercise protocols could modulate and induce changes in oxidative and inflammatory parameters, as well as in BDNF and DNA repair enzyme levels in skeletal muscle tissue of aged rats. Aging Wistar rats performed treadmill or strength training for 50 min 3 to 4 times a week for 8 weeks. Strength training decreased 2',7'-dichlorofluorescein (DCFH) oxidation (P = 0.0062); however, nitric oxide, protein deglycase DJ-1, and tumor necrosis factor alpha (TNF-α) levels increased after aerobic training (P = 0.04, P = 0.027 and P = 0.009, respectively). Both exercise protocols increased superoxide dismutase (SOD) and catalase (CAT) activity (P = 0.0017 and P = 0.0326) whereas the activity of glutathione (GSH) (P = 0.0001) was decreased. Brain-derived neurotropic factor (BDNF) levels were not affected by exercise, but 8-oxoguanine glycosylase (OGG1) decreased after strength training (P = 0.0007). In conclusion, oxidative parameters showed that skeletal muscle adapt to increased ROS levels, reducing the risk of free radical damage to the tissue after both exercise protocols. These results show that the effects of physical exercise on skeletal muscle are mediated in an exercise type-dependent manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app