JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

GhoT of the GhoT/GhoS toxin/antitoxin system damages lipid membranes by forming transient pores.

GhoT is a bacterial toxin of the type V toxin/antitoxin system that allows Escherichia coli to reduce its metabolism in response to oxidative and bile stress. GhoT functions by increasing membrane permeability and reducing both ATP levels and the proton motive force. However, how GhoT damages the inner membrane has not been elucidated. Here we investigated how GhoT damages membranes by studying its interaction with lipid bilayers and determined that GhoT does not cause macroscopic disruption of the lipid bilayer to increase membrane permeability to the dye carboxyfluorescein. Using circular dichroism, we found that GhoT forms an alpha helical structure in lipid bilayers that agrees with the structure predicted by the I-TASSER protein structure prediction program. The structure generated using I-TASSER was used to conduct coarse-grained molecular dynamics simulations, which indicate that GhoT damages the cell membrane, as a multimer, by forming transient transmembrane pores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app