Add like
Add dislike
Add to saved papers

Numerical study on the hemodynamics of patient-specific carotid bifurcation using a new mesh approach.

The definition of a suitable mesh to simulate blood flow in the human carotid bifurcation has been investigated. In this research, a novel mesh generation method is proposed: hexahedral cells at the center of the vessel and a fine grid of tetrahedral cells near the artery wall, in order to correctly simulate the large blood velocity gradients associated with specific locations. The selected numerical examples to show the pertinence of the novel generation method are supported by carotid ultrasound image data of a patient-specific case. Doppler systolic blood velocities measured during ultrasound examination are compared with simulated velocities using 4 different combinations of hexahedral and tetrahedral meshes and different fluid dynamic simulators. The Lin's test was applied to show the concordance of the results. Wall shear stress-based descriptors and localized normalized helicity descriptor emphasize the performance of the new method. Another feature is the reduced computation time required by the developed methodology. With the accurate combined mesh, different flow rate partitions, between the internal carotid artery and external carotid artery, were studied. The overall effect of the partitions is mainly in the blood flow patterns and in the hot-spot modulation of atherosclerosis-susceptible regions, rather than in their distribution along the bifurcation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app