Journal Article
Review
Add like
Add dislike
Add to saved papers

Expression and function of immune ligand-receptor pairs in NK cells and cancer stem cells: therapeutic implications.

BACKGROUND: The interplay between the immune system and cancer cells has come to the forefront of cancer therapeutics, with novel immune blockade inhibitors being approved for the treatment of an increasing list of cancers. However, the majority of cancer patients still display or develop resistance to these promising drugs. It is possible that cancer stem cells (CSCs) are contributing to this therapeutic resistance. Although CSCs usually represent a small percentage of the total number of cancer cells, they are endowed with the ability of self-renewal and to produce differentiated progeny. Additionally, they have shown the capacity to establish tumors after transplantation to animals, even in small numbers. CSCs have also been found to be resistant to various anti-cancer therapies, including chemotherapy, radiation therapy and, more recently, immunotherapy. This is true despite the sensitivity of CSCs to lysis in vitro by natural killer (NK) cells, the main effector cells of the innate immune system. In this paper the expression of ligands specific for NK cells on CSCs, the intracellular network responsible for the expression of the NK cytotoxicity receptors, and the status of activation of NK cells in the tumor micro-environment are reviewed. The aim of this review is to highlight potential strategies for overcoming CSC immune resistance, thereby enhancing the efficacy of current and future anti-cancer therapies.

THERAPEUTIC IMPLICATIONS: NK cell activation in the tumor micro-environment through drugs neutralizing inhibitory immune receptors, and combined with other drugs harnessing the potential of the adaptive immune system, could be the most effective approach for attacking both stem cell and non-stem cell cancer populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app