Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Analysis of Luminex-based Algorithms to Define Unacceptable HLA Antibodies in CDC-crossmatch Negative Kidney Transplant Recipients.

Transplantation 2018 June
BACKGROUND: HLA-specific antibodies detected by solid phase assays are increasingly used to define unacceptable HLA antigen mismatches (UAM) before renal transplantation. The accuracy of this approach is unclear.

METHODS: Day of transplant sera from 211 complement-dependent cytotoxicity crossmatch-negative patients were retrospectively analyzed for donor-specific anti-HLA antibodies (DSA) using Luminex technology. HLA were defined as UAM if DSA had mean fluorescence intensity above (I) 3000 (patients retransplanted and those with DSA against HLA class I and II) or 5000 (all other patients), (II) 5000 for HLA-A, -B, and -DR and 10 000 for HLA DQ or (III) 10 000 (all HLA). We then studied the accuracy of these algorithms to identify patients with antibody-mediated rejection (AMR) and graft loss. UAM were also determined in 256 transplant candidates and vPRA levels calculated.

RESULTS: At transplantation, 67 of 211 patients had DSA. Of these, 31 (algorithm I), 24 (II) and 17 (III) had UAM. Nine (I and II) and 8 (III) of 11 early AMR episodes and 7 (I), 6 (II) and 5 (III) of 9 graft losses occurred in UAM-positive patients during 4.9 years of follow-up. Algorithms I and II identified patients with persistently lower glomerular filtration rate even in the absence of overt AMR. Of the waiting list patients, 22-33% had UAM with median virtual panel reactive antibody of 69.2% to 79.1%.

CONCLUSIONS: Algorithms I and II had comparable efficacy but were superior to Algorithm III in identifying at-risk patients at an acceptable false-positive rate. However, Luminex-defined UAM significantly restrict the donor pool of affected patients, which might prolong waiting time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app