JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.

Ear and Hearing 2018 September
OBJECTIVES: Clinical pure-tone audiometry is conducted using stimuli delivered through supra-aural headphones or insert earphones. The stimuli are calibrated in an acoustic (average ear) coupler. Deviations in individual-ear acoustics from the coupler acoustics affect test validity, and variations in probe insertion and headphone placement affect both test validity and test-retest reliability. Using an insert earphone designed for otoacoustic emission testing, which contains a microphone and loudspeaker, an individualized in-the-ear calibration can be calculated from the ear-canal sound pressure measured at the microphone. However, the total sound pressure level (SPL) measured at the microphone may be affected by standing-wave nulls at higher frequencies, producing errors in stimulus level of up to 20 dB. An alternative is to calibrate using the forward pressure level (FPL) component, which is derived from the total SPL using a wideband acoustic immittance measurement, and represents the pressure wave incident on the eardrum. The objective of this study is to establish test-retest reliability for FPL calibration of pure-tone audiometry stimuli, compared with in-the-ear and coupler sound pressure calibrations.

DESIGN: The authors compared standard audiometry using a modern clinical audiometer with TDH-39P supra-aural headphones calibrated in a coupler to a prototype audiometer with an ER10C earphone calibrated three ways: (1) in-the-ear using the total SPL at the microphone, (2) in-the-ear using the FPL at the microphone, and (3) in a coupler (all three are derived from the same measurement). The test procedure was similar to that commonly used in hearing-conservation programs, using pulsed-tone test frequencies at 0.5, 1, 2, 3, 4, 6, and 8 kHz, and an automated modified Hughson-Westlake audiometric procedure. Fifteen adult human participants with normal to mildly-impaired hearing were selected, and one ear from each was tested. Participants completed 10 audiograms on each system, with test-order randomly varied and with headphones and earphones refitted by the tester between tests.

RESULTS: Fourteen of 15 ears had standing-wave nulls present between 4 and 8 kHz. The mean intrasubject SD at 6 and 8 kHz was lowest for the FPL calibration, and was comparable with the low-frequency reliability across calibration methods. This decrease in variability translates to statistically-derived significant threshold shift criteria indicating that 15 dB shifts in hearing can be reliably detected at 6 and 8 kHz using FPL-calibrated ER10C earphones, compared with 20 to 25 dB shifts using standard TDH-39P headphones with a coupler calibration.

CONCLUSIONS: These results indicate that reliability is better with insert earphones, especially with in-the-ear FPL calibration, compared with a standard clinical audiometer with supra-aural headphones. However, in-the-ear SPL calibration should not be used due to its sensitivity to standing waves. The improvement in reliability is clinically meaningful, potentially allowing hearing-conservation programs to more confidently determine significant threshold shifts at 6 kHz-a key frequency for the early detection of noise-induced hearing loss.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app