Add like
Add dislike
Add to saved papers

Modified HuffBit Compress Algorithm - An Application of R.

The databases of genomic sequences are growing at an explicative rate because of the increasing growth of living organisms. Compressing deoxyribonucleic acid (DNA) sequences is a momentous task as the databases are getting closest to its threshold. Various compression algorithms are developed for DNA sequence compression. An efficient DNA compression algorithm that works on both repetitive and non-repetitive sequences known as "HuffBit Compress" is based on the concept of Extended Binary Tree. In this paper, here is proposed and developed a modified version of "HuffBit Compress" algorithm to compress and decompress DNA sequences using the R language which will always give the Best Case of the compression ratio but it uses extra 6 bits to compress than best case of "HuffBit Compress" algorithm and can be named as the "Modified HuffBit Compress Algorithm". The algorithm makes an extended binary tree based on the Huffman Codes and the maximum occurring bases (A, C, G, T). Experimenting with 6 sequences the proposed algorithm gives approximately 16.18 % improvement in compression ration over the "HuffBit Compress" algorithm and 11.12 % improvement in compression ration over the "2-Bits Encoding Method".

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app