Add like
Add dislike
Add to saved papers

Unravelling the Structure and Electrochemical Performance of Li-Cr-Mn-O Cathodes: From Spinel to Layered.

To explore a new series of cathode materials with high electrochemical performance, the spinel-layered (1 - x)[LiCrMnO4 ]· x[Li2 MnO3 ·LiCrO2 ] ( x = 0, 0.25, 0.5, 0.75, and 1) composites are synthesized with the sol-gel method. X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction, and Raman spectra reveal that the structure of the (1 - x)[LiCrMnO4 ]· x[Li2 MnO3 ·LiCrO2 ] cathode materials evolves from spinel to hybrid spinel-layered and layered structures with the increase of the Li concentration. Test results reveal that the structure and electrochemical performance of (1 - x)[LiCrMnO4 ]· x[Li2 MnO3 ·LiCrO2 ] ( x = 0.25, 0.5 and 0.75) composites have the characteristics of both spinel ( x = 0) and Li-rich layered phases ( x = 1). In particular, x = 0.5 and 0.75 electrodes exhibit relatively high capacity retention and rate capability, which is mainly ascribed to the synergistic effect of the spinel and Li-rich layered phases, the 3D Li-ion diffusion channels of the spinel phase, and the low charge-transfer resistance ( Rct ) and Warburg diffusion impedance ( Wo ).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app