Add like
Add dislike
Add to saved papers

Gene Expression on DNA Biochips Patterned with Strand-Displacement Lithography.

Angewandte Chemie 2018 April 17
Lithographic patterning of DNA molecules enables spatial organization of cell-free genetic circuits under well-controlled experimental conditions. Here, we present a biocompatible, DNA-based resist termed "Bephore", which is based on commercially available components and can be patterned by both photo- and electron-beam lithography. The patterning mechanism is based on cleavage of a chemically modified DNA hairpin by ultraviolet light or electrons, and a subsequent strand-displacement reaction. All steps are performed in aqueous solution and do not require chemical development of the resist, which makes the lithographic process robust and biocompatible. Bephore is well suited for multistep lithographic processes, enabling the immobilization of different types of DNA molecules with micrometer precision. As an application, we demonstrate compartmentalized, on-chip gene expression from three sequentially immobilized DNA templates, leading to three spatially resolved protein-expression gradients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app