Add like
Add dislike
Add to saved papers

Measurement of multispecies concentration and gas temperature in an ammonium-dinitramide-based thruster by tunable diode lasers.

Applied Optics 2018 Februrary 21
In this paper, quantitative experiments were made to measure the concentration of key intermediate products (CO, N2 O, and NO) and the gas temperature for combustion flow based on near-infrared and mid-infrared laser absorption spectroscopy. This paper used the developed diagnostic system to study two main ignition modes of a real 1-Newton thruster based on ammonium dinitramide (ADN): steady-state firing and pulse-mode firing over a feed pressure of 5-12 bar. The steady-state firing experiments distinguished the whole process into catalytic decomposition stage and combustion stage, experimentally demonstrating the combustion kinetics mechanism of an ADN monopropellant. Experiments for pulse-mode firing showed the measured multispecies concentration and temperature were consistent with pulse trains, verifying good performance for the thruster pulse-mode firing operation. The performance of the thruster was given based on the optical measurements, and characteristic velocity for the ADN-based thruster standard operation was higher than the corresponding 1-Newton hydrazine thruster.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app