Add like
Add dislike
Add to saved papers

The Discovery of Antibacterial Natural Compound Based on Peptide Deformylase.

BACKGROUND: In recent years, Staphylococcus aureus have developed resistance to medicines used for the treatment of human infections. Therefore, the search for antibacterial agents of high potency against Staphylococcus aureus is of great concern. Peptide deformylase (PDF), a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins, has been considered to be an important antibacterial drug target.

OBJECTIVE: To discover novel antibacterial drugs based on Staphylococcus aureus peptide deformylase.

METHOD: PDF-based virtual screening of compounds from Traditional Chinese Medicine Database@Taiwan was performed by Sybyl X2.1 Surflex dock software. Compounds which possess high docking score were used for the following antibacterial experiments to evaluate their antibacterial activities. Kanamycin was also used in the antibacterial experiment as a control substance in the assay. Furthermore, molecular docking studies was applied to elucidate binding interaction between some compounds and PDF. In silico pharmacokinetic and toxicity prediction was explored to explain the reasons why these compounds might stand good chance of providing some pharmaceutical benefits.

RESULTS: Gentiopicroside, protosappanin B, dihydromyricetin and cryptochlorogenic acid with high docking score were used for our subsequent antibacterial assays. The Minimum Inhibitory Concentration (MIC) of kanamycin and gentiopicroside were 0.008 mg·mL-1 and 0.431 mg·mL-1, respectively, other three compounds, protosappanin B, dihydromyricetin and cryptochlorogenic acid have close MIC value of 0.50 mg·mL-1.

CONCLUSION: Dihydromyricetin, with the MIC value of 0.50 mg·mL-1 and relatively high drug score of 0.82, may serve as a novel antibacterial lead compound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app