JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Chemoresistance in ovarian cancer: exploiting cancer stem cell metabolism.

Ovarian cancer is most deadly gynecologic malignancies worldwide. Chemotherapy is the mainstay treatment for ovarian cancer. Despite the initial response is promising, frequent recurrence in patients with advanced diseases remains a therapeutic challenge. Thus, understanding the biology of chemoresistance is of great importance to overcome this challenge and will conceivably benefit the survival of ovarian cancer patients. Although mechanisms underlying the development of chemoresistance are still ambiguous, accumulating evidence has supported an integral role of cancer stem cells (CSCs) in recurrence following chemotherapy. Recently, tumor metabolism has gained interest as a reason of chemoresistance in tumors and chemotherapeutic drugs in combination with metabolism targeting approaches has been found promising in overcoming therapeutic resistance. In this review, we will summarize recent studies on CSCs and metabolism in ovarian cancer and discuss possible role of CSCs metabolism in chemoresistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app