Add like
Add dislike
Add to saved papers

TMCO1 is essential for ovarian follicle development by regulating ER Ca 2+ store of granulosa cells.

TMCO1 (transmembrane and coiled-coil domains 1) is an endoplasmic reticulum (ER) transmembrane protein that actively prevents Ca2+ stores from overfilling. To characterize its physiological function(s), we generated Tmco1-/- knockout (KO) mice. In addition to the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, Tmco1-/- females manifest gradual loss of ovarian follicles, impaired ovarian follicle development, and subfertility with a phenotype analogous to the premature ovarian failure (POF) in women. In line with the role of TMCO1 as a Ca2+ load-activated Ca2+ channel, we have detected a supernormal Ca2+ signaling in Tmco1-/- granulosa cells (GCs). Interestingly, although spontaneous Ca2+ oscillation pattern was altered, ER Ca2+ stores of germinal vesicle (GV) stage oocytes and metaphase II (MII) arrested eggs were normal upon Tmco1 ablation. Combined with RNA-sequencing analysis, we also detected increased ER stress-mediated apoptosis and enhanced reactive oxygen species (ROS) level in Tmco1-/- GCs, indicating the dysfunctions of GCs upon TMCO1 deficiency. Taken together, these results reveal that TMCO1 is essential for ovarian follicle development and female fertility by maintaining ER Ca2+ homeostasis of GCs, disruption of which causes ER stress-mediated apoptosis and increased cellular ROS level in GCs and thus leads to impaired ovarian follicle development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app