Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Extracellular α-synuclein levels are regulated by neuronal activity.

Molecular Neurodegeneration 2018 Februrary 23
BACKGROUND: α-Synuclein is a presynaptic protein abundant in the cytoplasmic compartment of neurons, whereas its presence in the extracellular space has also been observed under physiological conditions. Extracellular α-synuclein has pathological significance, exhibiting cellular toxicity and impairment of synaptic transmission. Notably, misfolded α-synuclein drives the cell-to-cell propagation of pathology via the extracellular space. However, the primary mechanism that regulates the extracellular levels of α-synuclein remains to be determined.

METHODS: Using several mechanistically distinct methods to modulate neuronal/synaptic activities in primary neuronal culture and in vivo microdialysis, we examined the involvement of neuronal/synaptic activities on α-synuclein release.

RESULTS: We demonstrate here that physiological release of endogenous α-synuclein highly depends on intrinsic neuronal activities. Elevating neuronal activity rapidly increased, while blocking activity decreased, α-synuclein release. In vivo microdialysis experiments in freely moving mice revealed that ~ 70% of extracellular α-synuclein arises from neuronal activity-dependent pathway. Selective modulation of glutamatergic neurotransmission altered extracellular α-synuclein levels, implicating this specific neuronal network in the mechanism of activity-dependent release of α-synuclein. While neuronal activity tightly regulated α-synuclein release, elevated synaptic vesicle exocytosis per se was capable to elicit α-synuclein release. We also found that extracellular α-synuclein exists as high molecular weight species.

CONCLUSIONS: The present study uncovers a novel regulatory pathway associated with α-synuclein release, whose dysregulation might affect various pathological actions of extracellular α-synuclein including its trans-synaptic propagation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app