JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diversity and evolution of the repetitive genomic content in Cannabis sativa.

BMC Genomics 2018 Februrary 22
BACKGROUND: The repetitive content of the genome, once considered to be "junk DNA", is in fact an essential component of genomic architecture and evolution. In this study, we used the genomes of three varieties of Cannabis sativa, three varieties of Humulus lupulus and one genotype of Morus notabilis to explore their repetitive content using a graph-based clustering method, designed to explore and compare repeat content in genomes that have not been fully assembled.

RESULTS: The repetitive content in the C. sativa genome is mainly composed of the retrotransposons LTR/Copia and LTR/Gypsy (14% and 14.8%, respectively), ribosomal DNA (2%), and low-complexity sequences (29%). We observed a recent copy number expansion in some transposable element families. Simple repeats and low complexity regions of the genome show higher intra and inter species variation.

CONCLUSIONS: As with other sequenced genomes, the repetitive content of C. sativa's genome exhibits a wide range of evolutionary patterns. Some repeat types have patterns of diversity consistent with expansions followed by losses in copy number, while others may have expanded more slowly and reached a steady state. Still, other repetitive sequences, particularly ribosomal DNA (rDNA), show signs of concerted evolution playing a major role in homogenizing sequence variation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app