Add like
Add dislike
Add to saved papers

Central and Peripheral Expression of DNA Double-Strand Breaks in Human and Mouse Tissues.

Mammalian cells accumulate DNA lesions when they undergo phases of the cell cycle or during normal cellular activity. In this regard, several DNA repair signaling pathways have evolved to maintain genome stability and avoid the potential acquisition of mutations. To define and further characterize the expression of DNA double-strand breaks in humans and mice, we used immunocytochemistry to localize a DNA damage signal within the spatial confines of the cell nucleus. We show that DNA double-strand breaks are abundantly expressed in postmitotic neurons of the human and mouse brain. Notably, DNA double-strand breaks are present in human hypothalamic and mouse striatal and hippocampal cells, with stable expression of the nuclear signal detected throughout the mammalian brain. Analysis of the mouse tongue, heart, and testis shows that expression of DNA double-strand breaks is only demonstrated in circumscribed populations of peripheral cells. These data suggest that levels of DNA double-strand breaks are tissue-specific with the tongue, heart and testicular tissue having different thresholds of DNA repair and DNA damage from those outlined at the brain level. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app