Add like
Add dislike
Add to saved papers

In Vivo Analysis of Centromeric Proteins Reveals a Stem Cell-Specific Asymmetry and an Essential Role in Differentiated, Non-proliferating Cells.

Cell Reports 2018 Februrary 21
Stem cells of the Drosophila midgut (ISCs) are the only mitotically dividing cells of the epithelium and, therefore, presumably the only epithelial cells that require functional kinetochores for microtubule spindle attachment during mitosis. The histone variant CENP-A marks centromeric chromatin as the site of kinetochore formation and spindle attachment during mitotic chromosome segregation. Here, we show that centromeric proteins distribute asymmetrically during ISC division. Whereas newly synthesized CENP-A is enriched in differentiating progeny, CENP-C is undetectable in these cells. Remarkably, CENP-A persists in ISCs for weeks without being replaced, consistent with it being an epigenetic mark responsible for maintaining stem cell properties. Furthermore, CENP-A and its loading factor CAL1 were found to be essential for post-mitotic, differentiating cells; removal of any of these factors interferes with endoreduplication. Taken together, we propose two additional roles of CENP-A: to maintain stem cell-unique properties and to regulate post-mitotic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app