Add like
Add dislike
Add to saved papers

Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol A from water.

In this study, new bio-based magnetic molecularly imprinted polymer nanoparticles (∼23 nm) were synthesized from keratin extracted from chicken feathers and methacrylate-functionalized Fe3 O4 nanoparticles for its potential application in separation and removal of bisphenol A from water. The prepared magnetic molecularly imprinted polymer was characterized by Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, thermogravimetric analysis, alternative gradient field magnetometry, and energy-dispersive X-ray spectroscopy. The sorption of bisphenol A was investigated by changing the influencing factors such as pH, immersion time, Fe3 O4 nanoparticles dosage, and the initial concentration of bisphenol A. Results illustrated that sorption was very fast and efficient (Qm  = 600 mg/g) having a removal efficiency of ∼98% in 40 min of immersion. The adsorption process showed better conformity with the Weber-Morris kinetics and the Freundlich isotherm model. The selectivity of bisphenol A by adsorbent was checked in the presence of hydroquinone, phenol, tetrabromobisphenol, and 4,4'-biphenol as interferences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app