Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The role of complement activation in rhabdomyolysis-induced acute kidney injury.

Rhabdomyolysis (RM) may cause kidney damage and results primarily in acute kidney injury (AKI). Complement is implicated in the pathogenesis of renal diseases and ischemia-reperfusion injury (IRI), but the role of complement, especially its activation pathway(s) and its effect in RM-induced AKI, is not clear. This study established a rat model of AKI induced by RM via intramuscular treatment with glycerol. Cobra venom factor (CVF) was administered via tail vein injection to deplete complement 12 h prior to intramuscular injection of glycerol. We found that the complement components, including complement 3 (C3), C1q, MBL-A, factor B(fB), C5a, C5b-9, and CD59, were significantly increased in rat kidneys after intramuscular glycerol administration. However, the levels of serum BUN and Cr, renal tubular injury scores, and the number of TUNEL-positive cells decreased significantly in the CVF+AKI group. These results suggest that complement plays an important role in RM-induced AKI and that complement depletion may improve renal function and decrease renal tissue damage by reducing the inflammatory response and apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app