Add like
Add dislike
Add to saved papers

Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs).

Aging 2018 Februrary 20
Tri-phenyl-phosphonium (TPP) is a non-toxic chemical moiety that functionally behaves as a mitochondrial targeting signal (MTS) in living cells. Here, we explored the hypothesis that TPP-related compounds could be utilized to inhibit mitochondria in cancer stem cells (CSCs). We randomly selected 9 TPP-related compounds for screening, using an ATP depletion assay. Based on this approach, five compounds were identified as "positive hits"; two had no detectable effect on ATP production. Remarkably, this represents a >50% hit rate. We validated that the five positive hit compounds all inhibited oxygen consumption rates (OCR), using the Seahorse XFe96 metabolic flux analyzer. Interestingly, these TPP-related compounds were non-toxic and had little or no effect on ATP production in normal human fibroblasts, but selectively targeted adherent "bulk" cancer cells. Finally, these positive hit compounds also inhibited the propagation of CSCs in suspension, as measured functionally using the 3D mammosphere assay. Therefore, these TPP-related compounds successfully inhibited anchorage-independent growth, which is normally associated with a metastatic phenotype. Interestingly, the most effective molecule that we identified contained two TPP moieties (i.e., bis-TPP). More specifically, 2-butene-1,4-bis-TPP potently and selectively inhibited CSC propagation, with an IC-50 < 500 nM. Thus, we conclude that the use of bis-TPP, a "dimeric" mitochondrial targeting signal, may be a promising new approach for the chemical eradication of CSCs. Future studies on the efficacy of 2-butene-1,4-bis-TPP and its derivatives are warranted. In summary, we show that TPP-related compounds provide a novel chemical strategy for effectively killing both i) "bulk" cancer cells and ii) CSCs, while specifically minimizing or avoiding off-target side-effects in normal cells. These results provide the necessary evidence that "normal" mitochondria and "malignant" mitochondria are truly biochemically distinct, removing a significant barrier to therapeutically targeting cancer metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app