Add like
Add dislike
Add to saved papers

Electronic Structure and Bonding Situation in M 2 O 2 (M = Be, Mg, Ca) Rhombic Clusters.

Quantum chemical calculations using ab initio methods at the CCSD(T) level and density functional theory have been carried out for the title molecules. The electronic structures of the molecules were analyzed with a variety of charge and energy decomposition methods. The equilibrium geometries of the M2 O2 rhombic clusters exhibit very short distances between the transannular metal atoms M = Be, Mg, Ca. The calculated distances are close to standard values between double and triple bonds, but there are no chemical M-M bonds. The metal atoms M carry large positive partial charges, which are even bigger than in diatomic MO. The valence electrons of M are essentially shifted toward oxygen in M2 O2 , which makes it possible that there is practically no electronic charge in the region between the metal atoms. The bond dissociation energies for fragmentation of M2 O2 into two metal oxides MO are very large. The metal-oxide bonds in the rhombic clusters are shorter and stronger than in diatomic MO. A detailed analysis of the electronic structure suggests that there is no significant direct M-M interaction in the M2 O2 rhombic clusters, albeit weak three-center M-O-M bonding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app