Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modulation of task-related cortical connectivity in the acute and subacute phase after stroke.

The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL). Bayesian model selection favoured a fully connected model. A reduced coupling from SMA and intact M1 in the γ-band (31-48 Hz) to lesioned M1 in the β-band (15-30 Hz) was observed in patients in the acute phase compared to controls. Behavioural performance improved significantly in the subacute phase, while an increased positive coupling from intact PMd to lesioned M1 and a less negative modulation from lesioned M1 to intact M1 were observed for patients compared to controls both from the γ-band to the β-band. We infer that the observed differences in cross-frequency cortical interactions are important for functional recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app