Add like
Add dislike
Add to saved papers

Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis.

Endothelial cells (ECs) and macrophages engage in tight and specific interactions that play critical roles in cardiovascular homeostasis and the pathogenesis of atherosclerosis. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes or shed from the surfaces of the membranes of most cell types. Increasing evidence indicates that EVs play a pivotal role in cell-to-cell communication. However, the contribution of EVs, as determine by oxidized low-density lipoprotein (ox-LDL)-exposed and/or Kruppel-like factor 2 (KLF2)-transduced ECs in the interaction between vascular ECs and monocytes/macrophages, which is a key event in atherosclerotic plaque development, has remained elusive. This study demonstrates the characteristic impact of EVs from ox-LDL-treated and/or KLF2-transduced ECs on the monocyte/macrophage phenotype in vitro and in vivo.Q-PCR showed that both the atherosclerosis inducer ox-LDL and atheroprotective factor KLF2 regulated inflammation-associated microRNA-155 (miR-155) expression in human umbilical vein endothelial cells (HUVECs). Moreover, coculture, immunofluorescence and flow cytometry revealed that miR-155 was enriched in ox-LDL-induced ECs-EVs and subsequently transferred to human monocytic THP1 cells, in which these vesicles enhance monocyte activation by shifting the monocytes/macrophages balance from anti-inflammatory M2 macrophages towards proinflammatory M1 macrophages; EVs from KLF2-expressing ECs suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses, which indicate the potent anti-inflammatory activities of these cells. Furthermore, oil red staining showed that atherosclerotic lesions were reduced in mice that received EVs from KLF2-transduced ECs with decreased proinflammatory M1 macrophages and increased anti-inflammatory M2 macrophages, and this effect is at least partly due to the decreased expression of inflammation-associated miR-155, confirming our in vitro findings. In summary, this study provides novel insights into the pathophysiological effects of altered EV secretion and/or microRNA content and their influence on modulating monocyte activation depending on the environment surrounding EVs-releasing ECs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app